High Throughput Screening for the Enhancement of Adeno-Associated Virus Type 2 Transduction
نویسندگان
چکیده
Adeno-associated virus (AAV) is a promising vector for human gene therapy. Although more effective than non-viral vectors, AAV still requires improvement in efficacy in order to become a successful gene therapy vector. With this in mind, we have sought to identify and examine identified enhancers of adeno-associated virus type 2 (AAV2) transduction. Using a high throughput screening system with recombinant AAV2 carrying the luciferase reporter gene (AAV2-Luc), we found siRNA sequences and chemical compounds which increase AAV2 reporter gene expression. We specifically identified a hexamer seed region 5’UGUUUC-3’ which facilitated AAV2 transduction. Chemical compound enhancers included ellagic acid, 1,10-phenanthroline, EGFR tyrosine kinase inhibitors, nucleoside analogs, and DNA alkylating agents. Although several of these compounds, such as EGFR tyrosine kinase inhibitors and DNA alkylating agents, were known enhancers of AAV transduction, compounds such as ellagic acid and 1,10-phenanthroline were newly identified as facilitating AAV2 transduction. After identifying these enhancers, we have further sought to understand a mechanistic basis for them through studies which individually quantified enhancement at stages including the virus-receptor interaction, the viral DNA introduction into the cell, reporter gene RNA transcription, and the production of protein from the transgene. The identification of siRNAs and chemical compounds which enhance transduction can lead to a better understanding of AAV2 biology and may provide a foundation for the engineering of novel AAV formulations, delivery systems, or vectors. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Chemical and Biomolecular Engineering First Advisor Scott L. Diamond
منابع مشابه
Generation of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملEnhancers of adeno-associated virus AAV2 transduction via high throughput siRNA screening.
Intracellular barriers to adeno-associated virus (AAV) transduction may limit gene delivery. We screened a short interfering RNA (siRNA) library targeting 5,520 genes to help identify pathways that modulate AAV transduction of human endothelium. In replicate screening, 50 pools (three siRNAs per gene) resulted in greater than eightfold reporter gene expression enhancement. Single siRNA confirma...
متن کاملEstablishment of an AAV Reverse Infection-Based Array
BACKGROUND The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. PRINCIPAL FINDINGS We established an AAV reverse infection (RI)-based method in which cells were transduced by...
متن کاملNootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method
The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...
متن کاملGene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کامل